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Stream-reach mass balance uses methane In
gaining streams to calculate groundwater
concentration and potential contamination

Baseflow of a gaining stream gives a weighted average

Represents a larger capture area and at lower cost than
monitoring wells

Presentation topics:
History of stream gas tracer studies
Methane persistence in streams
Gas transfer (atmospheric loss)
Bacterial consumption (oxidation)

Transport modeling to determine
methane loads

Isotopic fingerprinting




Previous stream gas-tracer studies
Initial gas tracer methods development: Kilpatrick and Cobb, 1985)

Stream re-aeration (2°Kr, methyl Cl, propane) (Tsivoglou, 1967;
Tsivoglou and Neal, 1976; Wilcock, 1984; Jin et al., 2012)

Groundwater Inflow (SF4, propane) (Genereux and Hammond, 1990,
1992; Wanninkhof et al., 1990; Cook et al., 2006)

Carbon cycling / evasion to atmosphere (propane, CO,) (Wallin et
al., 2011)

Contaminant (toluene) volatilization versus biodegradation
(propane) (kim et al., 1995)

Stream nitrogen fluxes / demitrfication (CFCs, NO3,SF¢) (Duran anc
Hemond, 1984; Bohlke et al., 2004, Tobias et al., 2009)

Groundwater dating (He, Kr) (Stolp et al., 2010; Solomon et al., in review)

Our studies document the first stream CH, injections, which we

use to quantify groundwater CH, concentrations and fluxes (Heilweil
et al., 2013; Heilweil et al., in review)



Why Care About Groundwater Methane?

Public concern — increased contamination with proximity to
gas wells (Jackson et al., PNAS, 2014)

Explosive hazard (basements, pump houses)

Early warning indicator of other contaminants:

— Fracking fluids

— Flow-back water with
high salinity and
radioactivity
Potent greenhouse
gas (IPCC reported

greenhouse potency
up to 84 x CO,)
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Stream-Reach Methane Mass Balance

Stream CH, [C] and load (C x Q) are
function of groundwater concentration
(Cyw) and influx (lg,), loss to the
atmosphere (A,) , and microbial
oxidation to CO, (Anmicr)

Aym Varies by stream - function of
turbulence, temperature, wind shear,
molecular diffusion (wanninkhof, WRR,1990)

Need to determine Q, Iy, C, *A (Aym, +
Amicr) 1O Solve for

aC

ax "

* (Heilweil et al.,
gw( _ C) — "Adw(C Groundwater, 2013)




Three study locations
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Method Testing at
Nine-Mile Creek

* Low-discharge (90 L/s)
medium gradient (0.007
m/m) stream

« Main objective: Methane
Injection to evaluate its
downstream persistence and
gas transfer velocity




Nine-Mile Creek Location Map
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Nine Mile Model Results

1-D Transport with gas exchange (Cook et al., WRR, 2006)

m Measured CHy
—— Simulated CH4 with A = 30 d-1
—— Simulated CHy4 with A = 37.5 d-1
——Simulated CHg with A = 45 d-1

L e '
200 1,000 1,500 2,000

Stream distance, meters
(from Heilweil et al., Groundwater, 2013)

Apparent gas transfer velocity (*k =*A x d) of 4.5 £ 1 m/d

Did not evaluate gas transfer to atmosphere (A,;,) versus
bacterial consumption (Apicr)
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West Bear Creek Injection

« Medium-discharge (500 L/s), low-gradient (0.003 m/m) stream with
high nitrate load due to hog & poultry concentrated animal feeding
operations (CAFQ’s) (Solomon& Genereux, NSF EAR-1045134)

* Bromide tracer dilution: Iy, = 70 L/s (15% streamflow increase over 2.7 km)

« Main objective: quantify fractions of methane loss to atmosphere
(Astm) versus microbial oxidation (Ac)




West Bear Creek Location Map
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Approach

Side-by-side gas injection of
CH, and Kr

Theoretical K-y, (and A_;,,)
can be calculated from Ky,
based on the ratio of their
diffusion coefficients

More-rapid decline in CH,
would indicate additional
loss due to microbial
oxidation (Ai..)



Methane concentration, ppb

West Bear Creek Methane Injection
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Gas Tracer Concentration, Percent Change
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Sugar Run Stream Methane Sampling
May 21, 2013
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Stream Methane In Sugar Run
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Modeling Insights
Uncertainty in Ky, and Iy, are largest sources of error

Gas and conservative-ion stream injections could improve these
parameter values

Refined sampling resolution (decreasing spacing between stream
sites) reduces uncertainty in methane load

Groundwater methane discharge may vary seasonally
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Sugar Run Isotopic Fingerprinting: 6'3C,, versus 62H¢p,
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Sugar Run Study Epilogue

September 2013: PA DEP Violation letter stating 5 water wells were
Impacted by stray gas migration from a leaky horizontal gas well
drilled beneath Sugar Run assumed to have defective casing or
cement: “the gas well had caused or allowed gas from lower
formations to enter fresh groundwater...”

June 2015: With increasing public pressure, partly due to press
coverage of our ES&T paper, PA DEP assessed $9 million civil
penalty “for failure to repair leaking gas well” under the Clean
Streams Law

Extrapolating Sugar Run CH, flux of 1 kg/d per 6 mi?to entire
Marcellus (95,000 mi?) yields estimates up to 100’s of thousands of
metric tons of CO, equivalent per year
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Relation of gas transfer rate to groundwater inflow

Sugar Run
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Approach for Stream Methane Studies

Scaled approach:
Reconnaissance stream CH, sampling
Higher resolution stream & shallow groundwater sampling
Hydrocarbon isotopes to identify source
Gas & bromide stream Injections to determine lg,, and Kqy,

Seasonal/annual sampling to establish baseline variability in
CH, load and evaluate trends caused development



Conclusions

Km-scale persistence of stream CH, supports feasibility of method
Transport modeling can quantify [CH,] and loads
Most CH, escapes to atmosphere

CH,-laden groundwater discharge to streams CH, is likely an
Important greenhouse gas source but more work is needed to
guantify it globally

Pilot-scale application of stream methane method in the Marcellus
shale-gas play shows the utility of a scaled approach

But seasonal/annual data collection needed for temporal variability
In CH, load and evaluating trends prior to shale-gas extraction to
clearly evaluate impacts of development




Future Efforts

Sampling and analysis improvements:
— Simplified stream-tracer injection methods
— Flow-integrated CH, sampling methods

— Lower-cost CH, analysis

Evaluate prevalence of thermogenic CH, groundwater
contamination in the Appalachian Basin (eastern U.S.) and
other shale-gas plays through regional reconnaissance
stream methane studies

Further investigate carbon cycling in stream
— Ultimate fate of microbially oxidized methane (CO,)

— Impacts of increased pCO, (acidification)
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More Information:
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A: Reduced gas transfer velocity
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Sugar Run Isotopic Fingerprinting
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613Cpyy versus [CH4]
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3He and *He
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